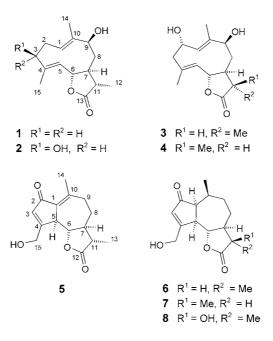
Five New Sesquiterpenoids from Parasenecio petasitoides

by Hua Zhang, Zhi-Xin Liao, and Jian-Min Yue*

State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P.R. China


(phone: +86-21-5080-6718; fax: +86-21-5080-6718; e-mail: jmyue@mail.shcnc.ac.cn)

From the whole plants of *Parasenecio petasitoides*, five new sesquiterpenoids were isolated, (E,E)- 3α ,9 β -dihydroxy- 6β H,11 β H-13-norgermacra-1(10),4-dien-11,6-carbolactone (**2**), (E,E)- 2α ,9 β -dihydroxy- 6β H,11 β H-13-norgermacra-1(10),4-dien-11,6-carbolactone (**3**), (E,E)- 2α ,9 β -dihydroxy- 6β H,11 α H-13-norgermacra-1(10),4-dien-11,6-carbolactone (**3**), (E,E)- 2α ,9 β -dihydroxy- 6β H,11 α H-13-norgermacra-1(10),4-dien-11,6-carbolactone (**3**), (E,E)- 2α ,9 β -dihydroxy- 6β H,11 α H-13-norgermacra-1(10),4-dien-11,6-carbolactone (**3**), (E,E)- 2α ,9 β -dihydroxy- 6β H,11 α H-13-norgermacra-1(10),4-dien-11,6-carbolactone (**3**), (E,E)- 2α ,9 β -dihydroxy- 6β H,11 α H-13-norgermacra-1(10),4-dien-11,6-carbolactone (**7**), and (E)-11 β ,15-dihydroxy-2-oxo- 6β H-13-norguaia-3-ene-11,6-carbolactone (**8**), together with three known compounds, deacetyl herbolide A (**1**), jacquilenin (**5**), and (E)-15-hydroxy-2-oxo- 6β H,11 β H-13-norguaia-3-ene-11,6-carbolactone (**6**). The structures of these natural products were elucidated spectroscopically, especially by 1D- and 2D-NMR techniques, in combination with high-resolution mass spectroscopy.

1. Introduction. – The genus *Parasenecio*, belonging to the family of Compositae, comprises more than 60 species [1]. There are 51 species occurring in China, and they are distributed mainly over the mountain areas in south-west China [1]. The genus *Parasenecio* had been formally misidentified as the genus *Cacalia* in China, and was recently revised as the genus *Parasenecio* in the Flora of China [1]. The *Parasenecio* species is an important source of Chinese traditional folklore medicine, with *ca.* 26 species being used as Chinese traditional folklore herbs for invigorating the circulation of blood, curing rheumatismal aches, and injuries from falls, *etc.* [2]. Recently, a number of new eremophilane-type sesquiterpenoids were isolated from several plants of this genus in China, and some of the compounds were found to exhibit antibacterial activity [3].

Parasenecio petasitoides, a perennial herbaceous plant, has, so far, not been investigated chemically. In the present work, we will describe the isolation and structure elucidation of the sesquiterpenoids 1-8, which were obtained from the whole plants of *P. petasitoides* collected from the Shanxi province in the Qinling Mountains, Peoples Republic of China. The isolated compounds include the five new sesquiterpenoids 2-4, 7, and 8, as well as three known compounds, deacetyl herbolide A (1), jacquilenin (5), and (*E*)-15-hydroxy-2-oxo-6 β H,11 β H-13-norguaia-3-ene-11,6-carbolactone (6).

2. Results and Discussion. – Compound **2** showed strong IR absorption bands at 3396 and 1751 cm⁻¹ for OH and lactone groups, respectively. Comparison of the ¹Hand ¹³C-NMR data of **1** and **2** indicated that both compounds had the same skeleton. A molecular formula of $C_{15}H_{22}O_4$ was derived for **2** by HR-EI-MS (*m*/*z* 266.1498 (*M*⁺; calc. 266.1518)), which is 16 mass units higher than the *M*⁺ signal for **1** [4], indicating

the presence of an additional OH group in **2**. In the ¹H-NMR spectra, the only difference between **1** and **2** was the presence of an additional OH group at C(3) in compound **2**, as deduced from the *multiplet* at $\delta_{\rm H}$ 4.19 (H–C(3); in CDCl₃) and the *singlet* at $\delta_{\rm C}$ 78.9 in the ¹³C-NMR (DEPT) spectrum. The NMR chemical shift and coupling constants for H–C(3) (*dd*, *J* = 10.1, 5.7), when recorded in CDCl₃/CD₃OD instead of CDCl₃, and the chemical shift of C(3) suggested that the 3-OH group was likely to be β -oriented (see *Table 1*) [5]. The connectivity and the coupling patterns of each H-bearing fragment were determined by a ¹H,¹H-COSY experiment (*Fig. 1*), in which two H-atom signals at $\delta_{\rm H}$ 2.22–2.29 (*m*), attributable to H–C(2), showed correlations with H–C(3) at $\delta_{\rm H}$ 4.19 and H–C(1) at 5.07 (*ddq*, *J*=11.8, 4.7, 1.4), confirming the presence of a 3-OH function. The ' γ -gauche' effect (*Fig. 2*) of the 3 β -OH group of **2** caused a remarkable high-field chemical shift for C(15) ($\delta_{\rm C}$ 11.4) relative to that of **1** ($\delta_{\rm C}$ 17.5) and to those of compounds with 3 α -OH groups, in which

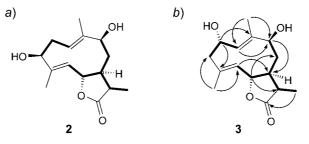


Fig. 1. ${}^{1}H,{}^{1}H$ -COSY Correlations (bold) and selected HMBC (H \rightarrow C) correlations observed for compounds 2 and 3

Table 1. ¹*H*-*NMR Spectral Data of the Sesquiterpenoids* 1-8. Chemical shifts δ in ppm, coupling constants *J* in Hz. Asterisks (*) denote overlapping signals.

H-C(1)	4.95 (<i>m</i>)	5.07 (11.			
		5.07 (ddq,	4.99 (ddq,	5.09 (dq,	5.04 (dq,
		J = 11.8, 4.7, 1.4	11.8, 4.5, 1.2)	J = 9.7, 1.4)	J = 9.8, 1.2)
H-C(2)		2.22 - 2.29 (m)	2.36, 2.19 (<i>m</i>)	4.69*	4.61 (<i>ddd</i> ,
					J = 9.8, 9.8, 5.6
$H_{\beta}-C(3)$		4.19 (<i>m</i>)	4.10 (<i>dd</i> ,	2.58 (dd,	2.58 (dd,
			J = 10.1, 5.7)	J = 11.0, 5.6)	J = 11.1 5.6)
$H_{\alpha}-C(3)$				1.97 (dd,	1.96 (dd,
				J = 11.0, 10.0)	J = 11.1, 9.8)
H-C(5)	4.47*	4.64 (br. $d, J = 9.9$)	4.49 (br.	4.78 (br.	4.70 (br.
			d, J = 9.8)	d, J = 10.2)	d, J = 10.0)
H-C(6)	4.47*	4.76 (dd,	4.56 (dd,	4.69*	4.58 (dd,
. ,		J = 9.9, 9.1	J = 9.8, 9.8)		J = 10.0, 9.8)
H-C(7)		1.79 (<i>m</i>)	1.67 (<i>m</i>)	1.82 (<i>m</i>)	1.75 (m)
H-C(8)		1.89 - 1.97 (m)	1.74 - 1.84 (m)	1.91 (<i>m</i>)	1.85(m)
H - C(9)	4.03 (dd, J = 10, 3)	4.03 (<i>m</i>)	3.95 (dd,	4.06 (m)	3.99 (dd,
- (-)		()	J = 9.8, 3.3)		J = 9.1, 3.8
H - C(11)		2.36 (dq,	2.26 (dq,	2.35 (dq,	2.31 (dq,
- ()		12.3, 7.0)	J = 12.3, 7.1)	J = 12.3, 7.0)	J = 12.0, 7.0
H - C(13)	1.25(d, J=7)	1.19(d, 7.0)	1.21 (d, J = 7.1)	1.19 (d, J = 7.0)	1.27 (d, J = 7.0)
. ,	1.43 (d, J = 1.4)	1.49(d, 1.4)	1.40 (d, J = 1.2)	1.51 (d, J = 1.4)	1.45(d, J = 1.2)
H-C(15)		1.71 (<i>d</i> , 1.7)	1.65 $(d, J = 1.3)$	1.74 (d, J = 1.4)	1.71 $(d, J = 1.2)$
	4 ^b)	5 ^a)	6 ^d)	7 ^b)	8 ^b)
$(\mathbf{I} - \mathbf{C}(1))$	5.00 (1-	,	2.81 (<i>dd</i> ,	2.76 (<i>dd</i> ,	2.74 (dd,
. ,	5.09(dq, 0.7, 1.4)		· · ·	· ·	,
	J = 9.7, 1.4		J = 7.0, 4.0)	J = 7.2, 3.9)	J = 7.2, 3.9)
· · ·	4.69(m)	(12 ()	(20 ()	6.04 (1)	()()
()	2.57 (dd, J = 11.0,	6.43 <i>(s)</i>	6.30 (dt, t)	6.24 (dt, t)	6.26 (dt, t)
	5.6, β -H);		J = 2.0, 2.0)	J = 2.0, 2.0)	J = 2.0, 2.0)
	1.97 (<i>dd</i> ,				
	$J = 11.0, 9.7, \alpha$ -H)				
. ,	4.79 (br. d, $J = 10.2$)		3.25(m)	3.26(m)	3.24 (<i>m</i>)
· · ·	4.91 (<i>dd</i> ,	3.61 (<i>dd</i> ,	4.49 (<i>dd</i> ,	4.69 (<i>dd</i> ,	4.65*
	J = 10.2, 9.8)	J = 10, 10)	J = 10.5, 9.5)	J = 10.4, 10.2)	100 ()
H-C(7)	2.36(m)	1.98(m)	1.83 (<i>ddd</i> ,	2.37 (<i>m</i>)	1.93 (<i>m</i>)
			J = 11.5, 10.5, 2.5)		
	1.81 - 1.92 (m)	1.99, 1.39 (<i>m</i>)	1.86, 1.51 (m)	1.74, 1.60 (m)	1.75 (<i>m</i>)
· · ·	4.06(m)	2.42, 2.40 (m)	1.94, 1.69 (m)	1.95, 1.67 (m)	1.97, 1.69 (m)
H - C(10)			2.56(m)	2.52(m)	2.54 (<i>m</i>)
· · ·	2.64 (dq,	2.28 (dq,	2.39 (dq,	2.40 (dq,	
	J = 7.8, 7.6)	J = 12.4, 7.0)	J = 11.5, 7.0)	J = 7.8, 7.0)	
. ,	1.18 (d, J = 7.6)	1.25 (d, J = 7.0)	1.18 (d, J = 7.0)	1.19(d, J = 7.8)	1.37 (s)
	1.49 (d, J = 1.4)	2.43(s)	0.78 (d, J = 7.0)	0.73 (d, J = 7.4)	0.74 (d, J = 7.4)
H-C(15)	1.75 (d, J = 1.6)	4.85, 4.48	4.46, 4.60	4.45, 4.62 (2 br. d,	4.48 (br. d,
		(2d, J = 17.7 each)	(2 br. d, J = 19.0 each)	J = 19.4 each)	J = 19.3), 4.65

C(15) normally appears at a δ_c value of *ca*. 17 to 18 [6]. The relative configuration of **2** was settled by NOESY experiments (*Fig. 3*). The chemical shifts of all H- and C-atom signals were fully determined by ¹H,¹H-COSY and HMQC experiments. Thus, the structure of **2** was elucidated as (*E*,*E*)-3 α ,9 β -dihydroxy-6 β H,11 β H-13-norgermacra-1(10),4-dien-11,6-carbolactone.

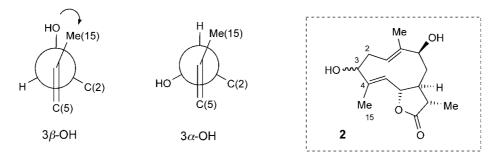


Fig. 2. View along the C(4) - C(3) bond of **2** to illustrate the ' γ -gauche' effect between the 3-OH and the Me(15) groups

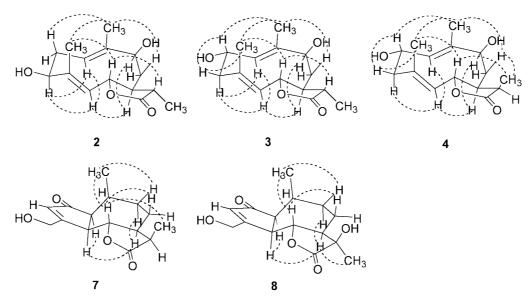


Fig. 3. Key NOESY correlations (dashed lines) observed in compounds 2, 3, 4, 7, and 8

Compound **3** was assigned a molecular formula of $C_{15}H_{22}O_4$ by HR-EI-MS (*m/z* 266.1514 (*M*⁺; calc. 266.1518)). The IR absorption bands of **3** indicated the presence of OH and lactone groups (3417 and 1755 cm⁻¹, resp.). The ¹H- and ¹³C-NMR data indicated that **3** was also a typical germacranolide-type sesquiterpenoid [5]. Comparison of the ¹H- and ¹³C-NMR data of **3** with those of **2** indicated that these two compounds were isomers, the only difference being the position of one of the OH functions. An OH group was allotted to C(2) by ¹H, ¹H-COSY correlation (*Fig. 1*): the H–C(2) signal at δ_H 4.69 correlated with the signals at δ_H 5.09 (*dq*, *J*=9.7, 1.4,

H-C(1)), 2.58 (*dd*, J = 11.0, 5.6, H_{β}-C(3)), and 1.97 (*dd*, J = 11.0, 10.0, H_a-C(3)). The presence of a 2 α -OH group was confirmed by a HMBC experiment (*Fig.* 1), the configuration being assigned based on the coupling constants between H-C(2) and H_{β}-C(3) (J = 5.6 Hz), and between H-C(2) and H_{α}-C(3) (10.0 Hz) [7]. The 2 α -configuration was further confirmed by a NOESY experiment (*Fig.* 3): a strong correlation was observed between H-C(2) and H_{β}-C(3), and a correlation was also observed between H-C(2) and H_{β}-C(3). The structure of **3** was, therefore, assigned as (*E*,*E*)-2 α ,9 β -dihydroxy-6 β H,11 β H-13-norgermacra-1(10),4-dien-11,6-carbolactone.

Compound **4** had a molecular formula of $C_{15}H_{22}O_4$, as determined by HR-EI-MS (m/z 266.1515 (M^+ ; calc. 266.1518)). The ¹H- and ¹³C-NMR data revealed that **4** was a stereoisomer of **3**. The relative configuration of **4** was elucidated by a detailed NOESY experiment (*Fig. 3*): H–C(13) at δ_H 1.18 showed strong interactions with H–C(6) (δ_H 4.91) and H_β –C(8), indicative of a β -configured Me(13) group. For germacranolide-type sesquiterpenoids, the coupling constant between H_β –C(11) and H–C(7) is usually *ca.* 12–13 Hz [8], whereas that between H_a –C(11) and H–C(7) is normally 7–8 Hz [9]. In the case of **4**, the latter was 7.8 Hz, indicating that H–C(11) was α -orientated. Compared with compound **3**, the C(8) resonance of compound **4** was shifted upfield ($\Delta\delta_C = -2.8$) due to the ' γ -gauche' effect of the Me(13 β) group. The structure of compound **4** was, thus, derived as (*E,E*)-2 α ,9 β -dihydroxy-6 β H,11 α H-13-norgerma-cra-1(10),4-dien-11,6-carbolactone.

Compound **7** was assigned the molecular formula $C_{15}H_{20}O_4$ by HR-EI-MS (m/z 264.1354 (M^+ ; calc. 264.1362)). The IR bands at 3408, 1768, and 1672 cm⁻¹ indicated the presence of OH, lactone, and α,β -unsaturated C=O groups, respectively. Comparison of the ¹H- and ¹³C-NMR spectral data of **7** and **6** [10] revealed that both compounds had the same structural backbone and functional patterns, and that they were stereoisomers, the only difference being the orientation of the Me(13) group. A NOESY experiment (*Fig. 3*) indicated β -configuration for the Me(13) group (correlation between H–C(13) at δ_H 1.19 and H–C(6) at δ_H 4.69). The configuration of **7** was also fully assigned by a NOESY experiment (*Fig. 3*), and the compound was identified as (*E*)-15-hydroxy-2-oxo-6 β H,11 α H-13-norguaia-3-ene-11,6-carbolactone.

Compound **8** had the molecular formula $C_{15}H_{20}O_5$, as determined by HR-EI-MS (*m*/*z* 280.1317 (*M*⁺; calc. 280.1311)). The similarity of IR absorptions as compared to those of **7** suggested the presence of OH, lactone, and α,β -unsaturated C=O groups. The ¹H- and ¹³C-NMR data of **7** and **8** were very similar. The molecular weight of **8** was 16 mass units higher than that of **7**, suggesting the presence of an additional OH group. The absence of the H–C(11) signal in the ¹H NMR spectrum of **8** and an additional signal for a quaternary C-atom at δ_C 74.3 in its ¹³C-NMR spectrum indicated that the OH group was located at C(11). The β -orientation was assigned to the 11-OH group by a NOESY experiment (H–C(13) at δ_H 1.37 was strongly correlated with H–C(7) at δ_H 1.93). The configuration of **8** was also corroborated by a NOESY experiment (*Fig. 3*), and the compound was identified as (*E*)-11 β ,15-dihydroxy-2-oxo-6 β H-13-norguaia-3-ene-11,6-carbolactone.

The three known compounds were identified as deacetylherbolide A (1), jacquilenin (5) [11], and (*E*)-15-hydroxy-2-oxo- 6β H,11 β H-13-norguaia-3-ene-11,6-carbolactone (6) [10] on the basis of their spectral data (¹H-NMR, ¹³C-NMR, EI-MS).

Experimental Part

General. All solvents were of anal. grade (Shanghai Chemical Plant). The petroleum ether used for plant extractions had a b.p. of $60-90^{\circ}$. Silica gel (200-300 mesh) was used for column chromatography (CC), and precoated SiO₂ GF₂₅₄ plates (Qingdao Haiyang Chemical Plant) were used for TLC. MCI Gel CHP20P (75–150 µm; Mitsubishi Chemical Industries Ltd.) and C₁₈ reverse-phased silica gel (150-200 mesh, Merck) were also used for CC. Melting points (m.p.) were measured on a Fisher-Johns melting-point apparatus and are uncorrected. Optical rotations were determined on a Perkin-Elmer 341 polarimeter. IR Spectra were recorded on a Perkin-Elmer 577 spectrometer; in cm⁻¹. NMR Spectra were recorded on Bruker AM-400 or Varian Mercury-400 spectrometers; chemical shifts δ in ppm are given rel. to SiMe₄ as internal standard, coupling constants J in Hz. Mass spectra (EI-MS; 70 eV) were recorded on a Finnigan MAT-95 mass spectrometer; in m/z (rel. %).

Plant Material. The whole plants of *P. petasitoides* were collected in July 2002 in the area of Shanxi province in the Qinling Mountains, P.R. China. The plants were identified by Prof. *Xiao-An Wang*, School of Biology, Shanxi Normal University, China. A voucher specimen has been deposited at Shanghai Institute of Materia Medica (Accession number: Paras-2002-3Y).

Extraction and Isolation. The air-dried powder of the whole plants of *P. petasitoides* (1.5 kg) was extracted with petroleum ether/acetone 1:1 (3×101) at r.t. The resulting crude extract was concentrated under reduced pressure. The crude extract (46.0 g) was fractionated on a *MCI*-gel column (100 g), eluting with 95% aq. EtOH to give a major fraction of 29.0 g, which was subjected to CC (SiO₂ (500 g); petroleum ether/acetone 50:1, 30:1, 20:1, 10:1, 7:1, 4:1, 2:1, 1:1, 0:1; using 21 of solvent each) to furnish nine fractions. *Fraction 5* was purified chromatographically on *I*) a *Sephadex LH-20* column (CHCl₃/MeOH 1:1), 2) a reverse-phased C_{I8} silica-gel column (MeOH/H₂O 3:7), and 3) a silica-gel column (petroleum ether/acetone 5:1) to afford 1 (24 mg). *Fraction 6* was purified on a *MCI*-gel column (MeOH/H₂O 1:1) to afford several major subfractions, which were purified by CC (SiO₂; petroleum ether/AcOEt 4:1) to yield 5 (4.6 mg), 6 (45.0 mg), 7 (3.5 mg), and 8 (18.4 mg). *Fraction 7* was first decolorized on a *MCI*-gel column (MeOH/H₂O 2:3) to obtain one major fraction, which was purified on a *Sephadex LH-20* column (CHCl₃/MeOH 1:1) to afford three fractions. Each was further purified by CC (SiO₂; petroleum ether/acetone 2:1) to yield 2 (11.2 mg), 3 (6.0 mg), and 4 (3.2 mg).

(E,E)-3 α ,9 β -Dihydroxy-6 β H,11 β H-13-norgermacra-1(10),4-dien-11,6-carbolactone (**2**). White solid. [α]_D²⁰ = +134.6 (c = 0.17, CHCl₃). IR (Film): 3396, 2926, 1751, 1668, 1456, 1379, 1335, 1240, 1215, 1188, 1142, 1049, 962, 868, 581. ¹H- and ¹³C-NMR: see *Tables 1* and 2, resp. EI-MS: 266 (18, M^+), 248 (19), 175 (31), 167 (39), 149 (30), 139 (37), 121 (34), 107 (41), 87 (100), 81 (93). HR-EI-MS: 266.1498 (M^+ , C₁₅H₂₂O⁺₄; calc.: 266.1518).

	1 ^a)	2 ^b)	3 ^b)	4 ^b)	5 ^a)	6 ^c)	6 ^b)	7 ^b)	8 ^b)
C(1)	129.3	126.6	132.1	131.8	131.1	55.3	53.8	53.8	53.9
C(2)	25.5	38.3	68.4	68.2	195.1	211.6	207.2	207.2	207.3
C(3)	39.4	78.9	49.6	49.6	133.2	129.3	128.8	128.4	128.5
C(4)	140.1	141.4	140.5	139.7	171.6	186.3	183.4	183.1	183.2
C(5)	127.2	125.2	129.9	130.0	49.5	52.1	51.2	51.1	51.0
C(6)	80.9	81.5	80.9	80.3	83.7	83.4	82.2	82.1	81.5
C(7)	51.5	52.3	51.4	46.3	56.1	52.2	51.5	46.1	53.2
C(8)	36.5	35.9	37.6	34.8	25.8	26.2	25.7	22.4	21.2
C(9)	79.6	80.2	79.0	79.2	37.7	35.7	34.9	34.8	34.4
C(10)	138.9	143.1	139.1	138.9	153.5	36.2	34.7	34.5	34.6
C(11)	42.0	42.8	42.0	41.2	41.3	42.9	41.6	39.9	74.3
C(12)	178.2	178.8	178.1	178.8	177.2	180.8	177.8	178.5	176.4
C(13)	13.3	13.9	13.1	10.8	12.2	13.0	12.8	10.9	19.8
C(14)	10.7	12.4	11.3	11.4	21.8	15.1	14.9	14.7	14.7
C(15)	17.3	11.4	18.2	18.2	62.5	63.0	62.4	62.2	62.3

Table 2. ¹³C-NMR Spectral Data of the Sesquiterpenoids 1-8

(E,E)-2 α ,9 β -Dihydroxy-6 β H,11 β H-13-norgermacra-1(10),4-dien-11,6-carbolactone (**3**). White solid. [α]_D²⁰ = +121.4 (c = 0.10, CHCl₃). IR (KBr): 3417, 2929, 1755, 1668, 1456, 1319, 1236, 1186, 1049, 1020, 962, 575. ¹H- and ¹³C-NMR: see *Tables 1* and 2, resp. EI-MS: 266 (8, M^+), 248 (22), 175 (31), 149 (21), 135 (29), 121 (40), 109 (39), 107 (68), 100 (84), 95 (61), 71 (100). HR-EI-MS: 266.1514 (M^+ , $C_{15}H_{22}O_4^+$; calc.: 266.1518).

(E,E)-2 α ,9 β -Dihydroxy-6 β H,11 α H-13-norgermacra-1(10),4-dien-11,6-carbolactone (4). White solid. $[\alpha]_D^{20} = +112.0 \ (c = 0.18, \text{CHCl}_3)$. IR (Film): 3383, 2924, 1747, 1668, 1456, 1378, 1288, 1211, 1018, 962. ¹H- and ¹³C-NMR: see *Tables 1* and 2, resp. EI-MS: 266 (12, M^+), 248 (17), 175, (29), 149 (47), 135 (31), 121 (43), 109 (37), 107 (69), 100 (89), 95 (63), 71 (100). HR-EI-MS: 266.1515 (M^+ , C₁₅H₂₂O₄⁺; calc.: 266.1518).

(*E*)-15-Hydroxy-2-oxo-6 β H,11 α H-13-norguaia-3-ene-11,6-carbolactone (**7**). White solid. $[\alpha]_{10}^{20} = +404.5$ (*c* = 0.10, CHCl₃). IR (KBr): 3408, 2931, 1768, 1672, 1608, 1385, 1265, 1219, 1198, 1049, 986, 852, 611. ¹H- and ¹³C-NMR: see *Tables 1* and 2, resp. EI-MS: 264 (100, *M*⁺), 246 (25), 233 (47), 218 (19), 191 (29), 149 (55). HR-EI-MS: 264.1354 (*M*⁺, C₁₅H₂₀O₄⁺; calc.: 264.1362).

(*E*)-11 β ,15-Dihydroxy-2-oxo-6 β H-13-norguaia-3-ene-11,6-carbolactone (**8**). Colorless crystals (acetone). M.p. 212–214°. [α]₂₀²⁰ = +5.0 (c = 0.10, CHCl₃). IR (KBr): 3508, 3369, 2928, 1770, 1676, 1612, 1441, 1329, 1269, 1246, 1136, 1045, 993, 922, 860, 630. ¹H-and ¹³C-NMR: see *Tables 1* and 2, resp. EI-MS: 280 (100, M^+), 262 (7), 249 (17), 234 (22), 191 (35), 175 (30), 139 (28). HR-EI-MS: 280.1317 (M^+ , C₁₅H₂₀O⁺; calc.: 280.1311).

Financial support of the *National Scientific Foundation* (30025044) and the foundation from the *Ministry of Science and Technology* (2002CB512807) is gratefully acknowledged. We thank professor *Xiao-An Wang* for plant identification.

REFERENCES

- Y. L. Chen, 'Flora Reipublicae Popularis Sinicae/Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita', Science Press, Beijing, 1999, Tomus 77(1), p. 19 and 20.
- [2] The China Medicinal Materials Co., 'Zhongguo Zhongyao Ziyuan Zhiyao', Science Press, Beijing, 1994, p. 1271; State Administration of Traditional Chinese Medicine, 'Zhonghua Bencao', Shanghai Scientific & Technical Publishers, Shanghai, 1999, Tomus 7, p. 746–749.
- [3] S. M. Zhang, G. L. Zhao, G. Q. Lin, Chin. Chem. Lett. 1998, 9, 65; S. M. Zhang, G. L. Zhao, G. Q. Lin, Phytochemistry 1998, 48, 519; M. J. Mao, Z. J. Jia, Chin. Chem. Lett. 2001, 12, 601; M. J. Mao, Z. J. Jia, Planta Med. 2002, 68, 55.
- [4] R. Segal, S. Sokoloff, B. Haran, D. V. Zaitschek, D. Lichtenberg, *Phytochemistry* 1977, 16, 1237; R. Segal, I. Feuerstein, H. Duddeck, M. Kaiser, A. Danin, *Phytochemistry* 1983, 22, 129.
- [5] A. J. Marco, F. J. Sanz, M. Carda, *Phytochemistry* 1992, 31, 2163.
- [6] K. Ito, Y. Sakakibara, M. Haruna, K.-H. Lee, Chem. Lett. 1979, 1469.
- [7] F. Bohlmamn, A. Adler, M. R. King, H. Robinson, Phytochemistry 1982, 21, 1169.
- [8] A. J. Marco, F. J. Sanz, A. Yuste, M. Carda, J. Jakupovic, Phytochemistry 1991, 30, 3661.
- [9] F. Bohlmann, C. Zdero, H. Robinson, M. R. King, Phytochemistry 1981, 20, 2029.
- [10] C. Zidorn, P. E. Ellmerer-Müller, K.-H. Ongania, S. Sturm, H. Stuppner, J. Nat. Prod. 2000, 63, 812.
- [11] T. Kanayama, M. Tada, Bull. Chem. Pharm. 1988, 61, 2971.

Received November 3, 2003